
THE HIERARCHY OF ASYMPTOTIC DOMINANCE

ADRIAN PĂCURAR
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1. Introduction

Often times in calculus students are tasked with evaluating limits of the form

lim
x→∞

P (x)

Q(x)

where the numerator and denominator are polynomials P (x) = pnx
n+pn−1x

n−1+· · ·+p1x+p0
and Q(x) = qmx

m + qm−1x
m−1 + · · · + q1x + q0, so that degP = n and degQ = m. After

computing several limits by hand, one usually notices the shortcut:

lim
x→∞

P (x)

Q(x)
=


0 degP < degQ

pn/qn degP = degQ = n

±∞ degP > degQ

The intuition behind this is that when degP < degQ is that the leading term of Q
dominates the leading term of P , so the infinity in the denominator is of a higher “order”,
bringing the entire fraction to zero. The opposite happens when degP > degQ, and when
the degrees are equal, the orders of infinity in the numerator and denominator are the same,
so ignoring all the lower order terms, one can cancel the leading terms, which yields the ratio
of the leading coefficients of P and Q. While this isn’t very rigorous at all, it is later proven
to work using L’Hôpital’s rule.

A similar shortcut can be used if the numerator and denominator are no longer polyno-
mials, but more complicated functions involving logarithms, exponentials, roots, etc. The
intuition is similar, and it has to do with the asymptotic dominance of the numerator versus
denominator.

Theorem 1. (Asymptotic Dominance) Suppose that b > 1, p > 0, and a > 1 are real
numbers. Then, as n→∞, we have

(1) logb(n) < np < an < n! < nn

where n runs over the positive integers. The < sign is to be interpreted in the limiting sense:

lim
log n

np
= lim

np

an
= · · · = 0 and lim

np

log n
= lim

an

np
= · · · =∞

Note: the reason we are restricting n solely to integers is because of the factorial. We
would require the Gamma function in order to expand it to real numbers, which is more
complicated to study.
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2. Log versus Polynomial

To prove the polynomial dominance over the logarithm, we are looking at the limit

lim
x→∞

logb(x)

xp

where b > 1 (otherwise the logarithm would be a decreasign function) and p > 0 (otherwise
the polynomial would be decreasing of the type 1/xp). To compute the above limit, notice
that under the conditions mentioned, both the numerator and denominator tend to infinity,
so we can freely apply L’Hôpital’s rule to get

lim
x→∞

logb(x)

xp
= lim

x→∞

1

x ln b
pxp−1

= lim
x→∞

1

px · xp−1 ln b
= lim

x→∞

1

pxp ln b
= 0

thus proving the asymptotic dominance of xp over log x.
Some applications of this are the following limit computations:

lim

√
x

lnx+ x+ 1
= 0 lim

3
√
x+ 1

lnx+ 8
=∞ lim

√
2x2 + 3x+ 1

1 + 3x+ 5 lnx
=

√
2

3

We saw that log x < x in the asymptotic sense. But what if we try to compare (log x)n to
x instead? Suppose n is a positive integer, and consider the limit (using L’Hôpital’s rule):

lim
x→∞

(log x)n

x
= lim

x→∞

n(log x)n−1 · 1

x
1

= lim
x→∞

n(log x)n−1

x
= · · · = lim

x→∞

n!

x
= 0

and a similar computation will show that (log x)n < xp for any p > 0. This means that
even if we raise the logarithm to some power, it will eventually lose against the polynomial
functions.

It is worth mentioning that we can actually insert another family of functions between
lnx and x in the dominance sequence. For q ∈ (0, 1), we have

lnx < x1−q <
x

lnx
< x

so the function x
lnx

tends to infinity more slowly than any power of x (or than xp for p > 1),
but faster than x1−q, i.e. than any power of x less than the first. The function

x

lnx
appears in many area of mathematics, especially in the study of prime numbers.
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3. Polynomial versus Exponential

To show the exponential dominance over the polynomial (and thus over the logarithm, we
use L’Hôpital’s rule to compute the limit

lim
x→∞

xp

ax

Note that we will need to apply L’Hôpital’s several times, until the exponent of x becomes
less than zero (or, if p is an integer, until the exponent of p reduces to zero). In either case,
we have a computation of the form

lim
x→∞

xp

ax
= lim

x→∞

pxp−1

ax ln a
= lim

x→∞

p(p− 1)xp−2

ax(ln a)2
=


limx→∞

p!

ax(ln a)p
if p ∈ Z

limx→∞
p(p− 1) . . . (p−N + 1)xp−N

ax(ln a)N
if p /∈ Z

It is easy to see that whenever p is an integer, we end up with a constant (p!) divided
by an exponential which tends to infinity, so the limit will be zero. If p is not an integer,
after repeating L’Hôpital’s N times (where N is the first integer so that p−N is a negative
exponent), the function xp−N will go to zero (belongs to the family of curves 1/xn, which
approach zero as x goes to infinity), so the limit is again zero. Hence

lim
x→∞

xp

ax
= 0

so the exponential function ax dominates the polynomial xp.
Infinite series can also be used to illustrate the asymptotic dominance of exponential

functions over polynomials. Consider the functions ex and xn, and recall the series expansion
of ex:

ex = 1 +
x1

1!
+
x2

2!
+ · · ·+ xn

n!
+

xn+1

(n+ 1)!
+ . . .

so that ex/xn is going to satisfy (if we omit all other positive terms)

exx−n >
x

(n+ 1)!

when x is positive. Now, letting x→∞, we see that exx−n →∞, as expected.
Since ex tends to infinity more rapidly than any power of x, this implies that lnx tends to

infinity more slowly than any power of x, as this is the inverse function of ex (how are their
graphs related?).
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4. Exponential versus Factorial

Since we would like to avoid the use of the Gamma function (a generalization of factorials
to real and complex numbers, not just integers), we are looking at a limit of the type

lim
n→∞

n!

an

as n runs over the integers. This means we can no longer compute such a limit using
L’Hôpital’s rule, as this would require continuity in the limiting variable (this is why we can
take derivative with L’Hôpital’s). Our goal is to show that this limit equals infinity.

To give some intuition (though not a complete proof), consider the case where a = 2:

L = lim
n→∞

n!

2n
= lim

n→∞

1× 2× 3× 4× · · · × n
2× 2× 2× 2× · · · × 2

= lim
n→∞

1

2
· 2

2
· 3

2
· 4

2
. . .

n− 1

2
· n

2

so as n gets very large, it is very easy to see that this limit will be ∞.
A more rigorous way to prove that limn→∞

n!
an

=∞ is to consider the sequence

bn =
n!

an

What happens if we take ratios of consecutive terms?

bn+1

bn
=

(n+ 1)!

an+1

n!

an

=
(n+ 1)!

an+1
· a

n

n!
=
n+ 1

a

and so

lim
n→∞

bn+1

bn
= lim

n→∞

n+ 1

a
=∞

How do we interpret this result? As n gets very large, the above computation is basically
saying that to get from bn to bn+1, you have to multiply bn by an increasingly VERY large
number (∞, as the limit shows). Hence

lim
n→∞

bn = lim
n→∞

n!

an
=∞

so the factorial is asymptotically dominant over the exponential.
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5. Factorial versus nn

To establish the asymptotic dominance of nn over n!, we consider the limit

lim
n→∞

n!

nn

and expanding the numerator and denominator as we did before, we get

lim
n→∞

n!

nn
= lim

n→∞

1× 2× 3× 4× · · · × n
n× n× n× n× · · · × n

so intuition tells us that this limit is zero. To introduce some rigor to our argument, let

An =
n!

nn

Now we borrow an idea from the root test in infinite series: if we can show that the limit
of the n-th root of An is zero, then it must be the case that An goes to zero, otherwise the
n-th root would approach one. To understand this argument, simply plot the function x1/n

on the interval [0, 2] for n = 10, 100, 1000, 10000, and notice that the graphs get closer and
closer to the horizontal line y = 1 as n increases. In other words, we are making use of the
fact that

lim
y→∞

α1/y =

{
0 α = 0

1 α > 0

which we can easily prove using L’Hôpital’s rule. So our goal is to show that the n-th root
of An is zero. Consider the limit

L = lim
n→∞

(An)1/n = lim
n→∞

(
n!

nn

)1/n

= lim
n→∞

(n!)1/n

n

Taking natural log and using the rules of logarithms to break up the fraction gives

lnL = lim
n→∞

ln

(
(n!)1/n

n

)
= lim

n→∞

(
1

n
ln (n!)− lnn

)
The factorial is just a product, so this breaks up even further as

lnL = lim
n→∞

(
ln 1 + ln 2 + · · ·+ ln(n− 1) + ln(n)

n
− lnn

)
= lim

n→∞

(
ln 1

n
+ · · ·+ ln(n− 1)

n
+

lnn

n
− lnn

)
and now we can use the asymptotic dominance of polynomials over logarithms to argue that
every fraction goes to zero, while the remaining term − lnn goes to minus infinity. Hence

lnL = −∞

which implies that L = 0, as desired.
An alternate proof, which may be more clear and easier to understand, is to instead

consider the sequence

Bn =
nn

n!
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and take the limit of the ratio of consecutive terms Bn+1/Bn (as we did when we compared
an to n! in the previous section). The idea here is to try and understand by what factor does
Bn+1 differ from Bn. We have:

lim
n→∞

Bn+1

Bn

= lim
n→∞

(n+ 1)n+1

(n+ 1)!
· n!

nn
= lim

n→∞

(n+ 1)n(n+ 1)

(n+ 1) · n!
· n!

nn
= lim

n→∞

(n+ 1)n

nn

and computing this is very easy, since it is equal to

lim
n→∞

Bn+1

Bn

= lim
n→∞

(
n+ 1

n

)n

= lim
n→∞

(
1 +

1

n

)n

= e

so for n very large, Bn+1 is approximately e times Bn - an exponential growth! Hence

lim
nn

n!
=∞

as expected.
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