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1. Introduction

When calculus students study power series of the form

f(x) =
∞∑
n=0

an(x− c)n

they learn to find the radius of convergence R by using either the ratio or the root test.
The computation boils down to simply looking at the coefficients. When the an are positive
(otherwise take the absolute value of the terms), we have

lim
n→∞

n
√
an =

1

R
= lim

n→∞

an+1

an

Most calculus books mention this shortcut, but very few (I haven’t seen one yet) provide a
proof of this fact. So let’s take the following theorem as our starting point:

Theorem 1. Suppose an is a sequence of positive terms, and that

(1) L = lim
n→∞

an+1

an

exists. Then limn→∞ n
√
an exists and is also equal to L, i.e

(2) lim
n→∞

n
√
an = L

Before providing a proof of this, we will need an additional lemma.

Lemma 1. Suppose rn is a sequence of positive terms converging to limn→∞ rn = R. Then

lim
n→∞

n
√
r1 · r2 . . . rn = R

The motivation behind this lemma was equation (2): I wanted to somehow introduce a
product under the root, where all the terms would cancel except an. In other words, if we
define a new sequence rn = an/an−1, notice that lim rn = L, so by Lemma 1 we obtain

L = lim
n→∞

n
√
r1 · r2 . . . rn = lim

n→∞
n

√
a1
a0
· a2
a1
. . .

an
an−1

= lim
n→∞

n

√
an
a0

= lim
n→∞

n
√
an

thus proving Theorem 1. Of course, we still need to argue that the lemma is true.
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2. The Average Value Of A Sequence

One can prove Lemma 1 by starting with a positive sequence rn → R, and considering the
limit

R′ = lim
n→∞

n
√
r1 · r2 . . . rn

which, after applying natural log, becomes

(3) logR′ = lim
n→∞

1

n
(log r1 + log r2 + · · ·+ log rn).

The expression inside the limit should ring a bell: it looks a lot like the average value of
the first n terms of the sequence log rn. If rn → R, applying log gives us log rn → logR.
What can be said about the average value of the first n terms of log rn? Intuition tells us
that for large n, the majority of the terms have to be close to the limit, so it is reasonable to
expect that, on average, the sequence has the value of its limit. This means that the limit
in (3) evaluates to logR, thus proving Lemma 1.

While the intuitive argument gives the correct result, how do we prove such a thing more
rigorously? First, we need to understand what one means by the limit of a sequence.

Definition 1. Let {an} be a sequence of real numbers. Then limn→∞ an = L if and only if
for every ε > 0, there exists some Nε such that if k ≥ Nε, then

|ak − L| < ε

To understand the definition, one should think of ε as the error (or difference) between
the tail terms of an and the limit L. Then if the sequence converges to L, the definition is
simply saying all the terms are within ε of the limit. In more precise terms, all the terms
with index higher than some Nε are going to be within ε of the limit (so the error is at most
ε). This is what is meant by writing |ak − L| < ε.

Armed with this definition, we are ready to try and prove that our intuitive understanding
regarding the average value of a sequence is actually correct.

Theorem 2. The average value of a convergent sequence is the limit of the sequence.

Proof. Suppose lim an = L, and fix ε > 0. By the definition, we can find Nε such that

k ≥ Nε =⇒ |ak − L| < ε

If we consider the sequence

bn =
a1 + a2 + · · ·+ an

n

so that bn represents the average of the first n terms of our original sequence an, then the
proof of our theorem reduces to showing that bn → L. We would like to make use of our
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definition, so we begin by analyzing the error term |bn − L|.

|bn − L| =
∣∣∣∣a1 + a2 + · · ·+ an

n
− L

∣∣∣∣
=

∣∣∣∣a1 + a2 + · · ·+ an
n

− nL

n

∣∣∣∣ (common denominator)

=

∣∣∣∣a1 + a2 + · · ·+ an − nL
n

∣∣∣∣ (combine fractions)

=

∣∣∣∣(a1 − L) + (a2 − L) + · · ·+ (an − L)

n

∣∣∣∣ (grouping)

The grouping is made possible since we have precisely n copies of ai, and n copies of L. Now,
we can apply the triangle inequality to obtain (assuming n is large enough to surpass Nε):

|bn − L| ≤
∣∣∣∣a1 − Ln

∣∣∣∣+

∣∣∣∣a2 − Ln

∣∣∣∣+ · · ·+
∣∣∣∣aNε−1 − Ln

∣∣∣∣+

∣∣∣∣aNε − Ln

∣∣∣∣+ · · ·+
∣∣∣∣an − Ln

∣∣∣∣
=

Nε−1∑
k=1

∣∣∣∣ak − Ln

∣∣∣∣+
n∑

k=Nε

∣∣∣∣ak − Ln

∣∣∣∣
<

Nε−1∑
k=1

|ak − L|
n

+
n∑

k=Nε

ε

n
(since |ak − L| < ε for k ≥ Nε)

In other words, we find that

|bn − L| <
1

n

Nε−1∑
k=1

|ak − L|+
n−Nε + 1

n
ε

Now, notice that the sum of the errors for the beginning terms of the sequence (first Nε − 1
terms) is finite, so taking limit the as n → ∞ brings it down to zero. For the second term,
notice that limn→∞

n−Nε+1
n

= 1, so in fact we have

|bn − L| < ε

whenever n ≥ Nε. In other words, bn satisfies the definition for lim bn = L, as desired. �

Notice that in our proof, we didn’t need the sequence an to be positive, so in fact our
intuition regarding the average value of a sequence works in general. The only reason while
we were talking about positive sequences in the beginning was because we were taking n-th
roots. Also, notice Lemma 1 fails if any of the terms is zero (because then the product would
be zero).

Example 1. We give a quick application of Theorem 1.

lim
n→∞

n

√
nn

n!
= e

To see this, consider the sequence an = nn/n!, and take the limit

lim
n→∞

an+1

an
= lim

n→∞

(
1 +

1

n

)n
= e
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