Graph Stirling Numbers

David Galvin Adrian Păcurar*

University of Notre Dame
Department of Mathematics

> MIGHTY LVIII
> October 7, 2017
contact: apacurar@nd.edu

Classical Stirling Numbers

Definition: For $n, k \geq 1$, the Stirling numbers of the first kind, $s(n, k)=\left[\begin{array}{l}n \\ k\end{array}\right]$, count the number of permutations of $\{1,2, \ldots, n\}$ with exactly k cycles.

For $n, k \geq 1$, the Stirling numbers of the first kind satisfy

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+(n-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]
$$

with initial conditions $\left[\begin{array}{l}0 \\ 0\end{array}\right]=1$ and $\left[\begin{array}{l}* \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ *\end{array}\right]=0$.

Classical Stirling Numbers

Definition: For $n, k \geq 1$, the Stirling numbers of the second kind, $S(n, k)=\left\{\begin{array}{l}n \\ k\end{array}\right\}$, count the number of partitions of $\{1,2, \ldots, n\}$ into k nonempty parts.

For $n, k \geq 1$, the Stirling numbers of the second kind satisfy

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}
$$

with initial conditions $\left\{\begin{array}{l}0 \\
0\end{array}\right\}=1$ and \(\left\{\begin{array}{l}*

0\end{array}\right\}=\left\{\right.\)| 0 |
| :--- |
| |$\}=0$.

Stirling Matrices

The 5×5 Stirling matrices of the first and second kind are

$$
s=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 2 & 3 & 1 & 0 \\
0 & 6 & 11 & 6 & 1
\end{array}\right) \quad S=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & 1 & 0 \\
0 & 1 & 7 & 6 & 1
\end{array}\right)
$$

Theorem: For any $n>0$, the $n \times n$ Stirling matrices satisfy

$$
\left(\left\{\begin{array}{c}
m \\
k
\end{array}\right\}\right)_{0 \leq m, k \leq n}^{-1}=\left((-1)^{m+k}\left[\begin{array}{c}
m \\
k
\end{array}\right]\right)_{0 \leq m, k \leq n}
$$

- Any $(n-1) \times(n-1)$ minor is nonnegative
- In fact, every minor is nonnegative!

Totally Nonnegative Matrices

Definition: A matrix is said to be totally nonnegative (TN) if each of its minors is nonnegative.

Example: One can easily check that the matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 5 & 1
\end{array}\right)
$$

is totally nonnegative by verifying that every minor is nonnegative.

Theorem: For any $n \geq 1$, the $n \times n$ Stirling matrices are TN. Proof: Uses planar networks.

Planar Networks

Definition: A planar network of order n is an acyclic, planar, weighted, directed graph with $2 n$ designated boundary vertices (n sources and n sinks), $s_{1}, \ldots s_{n}$ and t_{1}, \ldots, t_{n}.

For any planar network G, we can construct the path matrix $\left(w_{i, j}\right)$, where $w_{i, j}$ counts the weighted number of paths from s_{i} to t_{j}.

Example: A planar network and its associated path matrix:

$$
\longrightarrow\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 5 & 1
\end{array}\right)
$$

Note: We also found this matrix to be TN.

Planar Networks And Total Nonnegativity

 Theorem: (Lindstrőm's Lemma) The path matrix of any planar network with nonnegative weights is TN.Note: In general, different networks can give rise to the same path matrix, but if our matrix is invertible and lower triangular, we can use:

Stirling Total Nonnegativity

Theorem: For any $n \geq 0$, the $n \times n$ Stirling matrices $\left(\left[\begin{array}{c}m \\ k\end{array}\right]\right)_{1 \leq m, k \leq n}$ and $\left(\left\{\begin{array}{c}m \\ k\end{array}\right\}\right)_{1 \leq m, k \leq n}$ are TN.
Proof: The planar network for the Stirling numbers of the first kind is:

Stirling Total Nonnegativity

Theorem: For any $n \geq 0$, the $n \times n$ Stirling matrices $\left(\left[\begin{array}{c}m \\ k\end{array}\right]\right)_{1 \leq m, k \leq n}$ and $\left(\left\{\begin{array}{c}m \\ k\end{array}\right\}\right)_{1 \leq m, k \leq n}$ are TN.
Proof: The planar network for the Stirling numbers of the second kind is:

Graph Stirling Numbers

Definition: For any graph G on n vertices $\left\{v_{1}, \ldots, v_{n}\right\}$, define the graph Stirling numbers of the second kind $\left\{\begin{array}{c}G \\ k\end{array}\right\}$ to be the number of ways of partitioning the vertices of G into k nonempty independent sets.

Typically we consider G_{m} to be the induced subgraph of G on vertices $\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, and we look at $\left\{\begin{array}{c}G_{m} \\ k\end{array}\right\}$.
Example: For G an independent set, this gives just the classical Stirling numbers (the empty edge structure imposes no restriction on partitioning), so $\left\{\begin{array}{c}G_{m} \\ k\end{array}\right\}=\left\{\begin{array}{c}m \\ k\end{array}\right\}$.

Example: For G the complete graph, we have

$$
\left\{\begin{array}{c}
K_{m} \\
k
\end{array}\right\}=\delta_{m, k}=\left\{\begin{array}{cc}
0 & m \neq k \\
1 & m=k
\end{array}\right.
$$

Chordal Graphs

Definition: A chordal graph is a graph in which every cycle of length at least 4 has a chord.

Definition: A perfect elimination order of a graph is a labeling of the vertices such that for any vertex v_{i}, its preceeding neighbours in the labeling form a clique.

Theorem: (Characterization) A chordal graph is a graph that admits a perfect elimination order.

Example:

Chordal Graphs

$$
S_{G}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 2 & 4 & 1 & 0 & 0 \\
0 & 0 & 6 & 6 & 1 & 0 \\
0 & 0 & 0 & 12 & 8 & 1
\end{array}\right), \quad S_{G}^{-1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 2 & -4 & 1 & 0 & 0 \\
0 & -6 & 18 & -6 & 1 & 0 \\
0 & 24 & -96 & 36 & -8 & 1
\end{array}\right)
$$

Total Nonnegativity Of Graph Stirling

Theorem: If G is chordal on n vertices listed in a perfect elimination order, then the matrix $\left(\left\{\begin{array}{c}G_{m} \\ k\end{array}\right\}\right)_{0 \leq m, k \leq n}$ is TN. This generalizes the classical result.

Proof: Also uses planar networks.

- Construct a planar network with path matrix $\left(\left\{\begin{array}{c}G_{m} \\ k\end{array}\right\}\right)$
- Some of the weights are negative
- Manipulate the weights to turn them all positive without changing the path matrix

Thank you!

