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Classical Stirling Numbers

De inition: For n, k ≥ 1, the Stirling numbers of the irst
kind, s(n, k) =

[
n
k

]
, count the number of permutations of

{1, 2, . . . , n}with exactly k cycles.
For n, k ≥ 1, the Stirling numbers of the irst kind satisfy[

n

k

]
=

[
n− 1

k − 1

]
+ (n− 1)

[
n− 1

k

]
,

with initial conditions
[
0
0

]
= 1 and

[∗
0

]
=

[
0
∗

]
= 0.



Classical Stirling Numbers

De inition: For n, k ≥ 1, the Stirling numbers of the second
kind, S(n, k) =

{
n
k

}
, count the number of partitions of

{1, 2, . . . , n} into k nonempty parts.
For n, k ≥ 1, the Stirling numbers of the second kind satisfy{

n

k

}
=

{
n− 1

k − 1

}
+ k

{
n− 1

k

}
with initial conditions

{
0
0

}
= 1 and

{∗
0

}
=

{
0
∗

}
= 0.



Stirling Matrices
The 5× 5 Stirling matrices of the irst and second kind are

s =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 2 3 1 0
0 6 11 6 1

 S =


1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 1 3 1 0
0 1 7 6 1


Theorem: For any n > 0, the n× n Stirling matrices satisfy({

m

k

})−1

0≤m,k≤n

=

(
(−1)m+k

[
m

k

])
0≤m,k≤n

I Any (n− 1)× (n− 1)minor is nonnegative
I In fact, every minor is nonnegative!



Totally Nonnegative Matrices

De inition: A matrix is said to be totally nonnegative (TN) if
each of its minors is nonnegative.
Example: One can easily check that the matrix1 0 0

1 1 0
1 5 1


is totally nonnegative by verifying that every minor is
nonnegative.
Theorem: For any n ≥ 1, the n× n Stirling matrices are TN.
Proof: Uses planar networks.



Planar Networks
De inition: A planar network of order n is an acyclic, planar,
weighted, directed graph with 2n designated boundary
vertices (n sources and n sinks), s1, . . . sn and t1, . . . , tn.
For any planar networkG, we can construct the path matrix
(wi,j), where wi,j counts the weighted number of paths from
si to tj .
Example: A planar network and its associated path matrix:

1 1

2 2

3 3

1

1 4
−→

1 0 0
1 1 0
1 5 1



Note: We also found this matrix to be TN.



Planar Networks And Total Nonnegativity
Theorem: (Lindstrőm’s Lemma) The path matrix of any
planar network with nonnegative weights is TN.
Note: In general, different networks can give rise to the
same path matrix, but if our matrix is invertible and lower
triangular, we can use:

1 1

2 2

3 3

4 4

5 5

w1,1

w2,1 w2,2

w3,1 w3,2 w3,3

w4,1 w4,2 w4,3 w4,4



Stirling Total Nonnegativity
Theorem: For any n ≥ 0, the n× n Stirling matrices([

m
k

])
1≤m,k≤n

and
({

m
k

})
1≤m,k≤n

are TN.
Proof: The planar network for the Stirling numbers of the
irst kind is:

1 1

2 2

3 3

4 4

5 5

1

2 1

3 2 1

4 3 2 1



Stirling Total Nonnegativity
Theorem: For any n ≥ 0, the n× n Stirling matrices([

m
k

])
1≤m,k≤n

and
({

m
k

})
1≤m,k≤n

are TN.
Proof: The planar network for the Stirling numbers of the
second kind is:

1 1

2 2

3 3

4 4

5 5

1

1 2

1 2 3

1 2 3 4



Graph Stirling Numbers
De inition: For any graphG on n vertices {v1, . . . , vn},
de ine the graph Stirling numbers of the second kind

{
G
k

}
to

be the number of ways of partitioning the vertices ofG into
k nonempty independent sets.
Typically we considerGm to be the induced subgraph ofG
on vertices {v1, v2, . . . , vm}, and we look at

{
Gm

k

}
.

Example: ForG an independent set, this gives just the
classical Stirling numbers (the empty edge structure
imposes no restriction on partitioning), so

{
Gm

k

}
=

{
m
k

}
.

Example: ForG the complete graph, we have{
Km

k

}
= δm,k =

{
0 m ̸= k

1 m = k



Chordal Graphs
De inition: A chordal graph is a graph in which every cycle
of length at least 4 has a chord.
De inition: A perfect elimination order of a graph is a
labeling of the vertices such that for any vertex vi, its
preceeding neighbours in the labeling form a clique.
Theorem: (Characterization) A chordal graph is a graph
that admits a perfect elimination order.
Example:

1 2 3 4 5 6



Chordal Graphs

1 2 3 4 5 6

SG =


1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 2 4 1 0 0
0 0 6 6 1 0
0 0 0 12 8 1

 , S−1
G =


1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 2 −4 1 0 0
0 −6 18 −6 1 0
0 24 −96 36 −8 1





Total Nonnegativity Of Graph Stirling

Theorem: IfG is chordal on n vertices listed in a perfect
elimination order, then the matrix

({
Gm

k

})
0≤m,k≤n

is TN. This
generalizes the classical result.
Proof: Also uses planar networks.

I Construct a planar network with path matrix
({

Gm

k

})
I Some of the weights are negative
I Manipulate the weights to turn them all positive
without changing the path matrix

Thank you!


