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1. Introduction

The study of prime numbers has been around since antiquity, and even today they hold
a special interest in the heart of many mathematicians - there is an entire branch of mathe-
matics dedicated to their study, called number theory. Before we go any further, let’s define
what a prime number actually is:

Definition 1. A number p ≥ 2 is prime whenever its only positive divisors are 1 and p.
Primes appear in high school math (or earlier depending on the country you grew up in),

when talking about factoring integers, dealing with fractions (greatest common denominator,
least common multiple), etc. But usually one has to wait until undergrad and take an
introductory number theory course in order to get to learn more about them. One of the
oldest and very natural question to ask is “how many primes are there?”

Theorem 1. There are infinitely many primes.

Throughout history there have been numerous proofs of this result. They are all very
interesting to read, and some require more knowledge of mathematics to understand than
others. I am presenting a few that I have found from various sources here.

2. Euclid’s Proof

Proof. Let P = {2, 3, 5, 7, 11, . . . } denote the set of prime numbers, and suppose that there
are only finitely many primes (r total). Then we can list them in increasing order as follows:

Pr = {p1, p2, . . . , pr}.
What happens if we multiply them all together, i.e what can we say about the number
p1 · p2 . . . pr? It will be divisible by all the primes in our list. For example, if r was just 4,
then the number 2 · 3 · 5 · 7 = 210 is divisible by all the primes 2, 3, 5, 7. Now consider

N = p1 · p2 . . . pr + 1

which is one more than the product of all primes we just discussed. But then notice that N
cannot be divisible by any prime pi in our list. In other words the only positive divisors of
N are going to be 1 and N , which means N is also a prime number (by our definition).

Lastly, notice that N is larger than any prime in our list, and this contradicts the assertion
that P was the set of all primes. We see then that a finite set cannot be the set of all primes
(we will always arrive to this contradiction), so there must be infinitely many primes. �

This is the proof I learned when I first took number theory, but is a slight variation of this
proof listed in Proofs From The Book, which goes as follows: we look at N = p1 ·p2 . . . pr +1,
which will have some prime divisor p. Now, if p was on our list, then p will divide both N
and the product p1 . . . pr = N − 1.

Any time a prime number divides two numbers A and B, it will also divide their sum and
difference, so p must divide N − (N − 1) = 1, which is a impossible, since 1 is smaller than
any prime.
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3. Proof Using Fermat Numbers

Definition 2. The Fermat numbers are numbers of the form Fn = 22n + 1, where n is a
nonnegative integer.

For example, the first few fermat numbers are F0 = 3, F1 = 5, F2 = 17, F3 = 257,
F5 = 65537, etc. They have many interesting properties (see Wikipedia for the basics), but
one property of particular interest to us is the recursive formula that they satisfy:

Theorem 2. The Fermat numbers satisfy, for n ≥ 1

Fn = 2 +
n−1∏
i=0

Fi

with initial condition F0 = 3.

Proof. We proceed by induction on n. For the base case (n = 1), notice that F1 = 5 and the
recursive formula gives 2 + F0 = 2 + 3 = 5. Next, using induction, we have

2 +
n∏

i=0

Fi = 2 +

(
n−1∏
i=0

Fi

)
· Fn

= 2 + (Fn − 2)Fn (by the inductive hypothesis)

= 2 + (22n + 1− 2)(22n + 1) (since Fn = 22n + 1)

= 2 + (22n − 1)(22n + 1)

= 2 +
(
22n
)2 − 12

= 22·2n + 1

= 22n+1

+ 1

but this is precisely Fn+1, as needed. �

Corollary 1. The Fermat numbers are relatively prime.

Proof. Pick any two distinct Fermat numbers Fa and Fb, and let d be a common divisor of
both. Then d must also divide the difference, i.e. d divides (22a + 1)− (22b + 1), so d must
divide 2. Then the only possible values for d are 1 or 2. But since all Fermat numbers are
odd, d cannot be 2, so d = 1 (which means the only common factor of Fa and Fb is 1, i.e.
they are relatively prime). �

The fact that are infinitely many primes follows immediately from Corollary 1. There are
infinitely many Fermat numbers, and since they are all relatively prime, this means that
each Fermat number introduces one or more new primes (either the Fermat number itself
is a prime, or it factors into new primes that do not divide any of the preceeding Fermat
numbers).
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4. Proof Using Group Theory

Before presenting the proof, we introduce the definition of a group, and a few examples.

Definition 3. A group is an ordered pair (G, ∗) where G is a set of elements, and ∗ is a
binary operation on G satisfying the following axioms:

(i) (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G (associativity)
(ii) there exist an identity element e ∈ G such that for all a ∈ G, a ∗ e = e ∗ a = a

(iii) for each a ∈ G, there exist an inverse a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

A group is called abelian (or commutative) whenever a ∗ b = b ∗ a for all a, b ∈ G. A few
examples of abelian groups are listed below:

• The integers Z under the addition operation +
• The nonzero rational numbers Q \ {0} under multiplication (the removal of zero

ensures the existance of inverses for every element)
• The group Z/nZ under addition modulo n
• The group (Z/nZ)× = {a ∈ Z/nZ | (a, n) = 1} under multiplication modulo n. For
n = 9, we obtain (Z/9Z)× = {1, 2, 4, 5, 7, 8}. The multiplicative inverses of these
elements are {1, 5, 7, 2, 4, 8}, respectively. When n is prime, (Z/nZ)× will have exactly
n− 1 elements {1, 2, 3, . . . , n− 1}.

Definition 4. The order of an element a in a group G is the smallest integer d such that
ad = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸

d times

= e. The order of a group is the size of the group (can be infinite).

Theorem 3. (Lagrance) If G is a finite multiplicative group, the order of any element divides
the order of the group.

We need one last definition before we give the proof.

Definition 5. We say a ≡ b (mod n) (a is congruent to b modulo n) whenever n|(a− b).
Armed with this information, we are finally ready to give the group theoretic proof of the

infinity of primes.

Proof. Suppose the set of all primes P is finite, and p is the largest prime. Consider the
number 2p − 1 (numbers of this form are called Mersenne numbers). If we can show that
every prime factor q of 2p − 1 is larger than p, then we are done (as it would contradict p
being the largest prime). Let q be any prime factor of 2p − 1. Then by the definition of
congruence, we have 2p ≡ 1 (mod q).

Consider the (finite) multiplicative group (Z/qZ)×, so the order of element 2 ∈ (Z/qZ)×

is p. But then by Lagrange’s theorem, p must divide the size of the group, which is q − 1.
Since p|(q − 1), it follows that p is less than q, as desired. �
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5. Proof Using Euler’s Product

For this proof, we will need to use the following theorem:

Theorem 4. (Fundamental Theorem Of Arithmetic) Every integer has a unique prime
factorization.

Now, suppose P is the set of all primes. The Euler product for the Riemann zeta function
is given by

ζ(s) =
∑
n≥1

1

ns
=
∏
p∈P

1

1− p−s

where the product is taken over all primes. To see why this is true, we can expand 1
1−1/ps

using geometric series, so we have∏
p∈P

1

1− 1/ps
=
∏
p∈P

∞∑
k=0

(
1

ps

)k

=
∑
k≥0

(
1

2s

)k

×
∑
k≥0

(
1

3s

)k

×
∑
k≥0

(
1

5s

)k

×
∑
k≥0

(
1

7s

)k

× . . .

Multiplying the sums out, we obtain something of the form∑
r1,r2,r3,···≥0

1

2sr13sr25sr35sr4 · · ·
=
∑
k≥0

1

ns

so we have the desired equality given by Euler’s product. Finally we use this to argue the
infinitude of primes.

Proof. Begin by setting s = 1, so we have∏
p∈P

1

1− 1/p
=
∑
n≥1

1

n
=∞

Now, the sum on the RHS is the harmonic series, which diverges to infinity. If P had only
finitely many primes, the LHS would be finite as it would be a product of finitely many
factors. Thus P contains infinitely many primes. �
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