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1. Introduction

Questions about the divisors d of an integer n are at the heart of number theory. We can
define many functions f : N→ R that give us information about the divisors of n.

Definition. The divisor function τ : N→ N counts the number of divisors of n. We have

τ(n) =
∑
d|n

1

where the sum is taken over all positive divisors d of n.

Example. τ(8) = 4, since 8 has 4 divisors {1, 2, 4, 8}

Example. τ(12) = 6, since 12 has 6 divisors {1, 2, 3, 4, 6, 12}.

Definition. The divisor sum function σ : N→ N is the sum of the divisors of n, given by

σ(n) =
∑
d|n

d

where the sum is again taken over all positive divisors d of n.

Example.

• σ(2) = 1 + 2 = 3
• σ(3) = 1 + 3 = 4
• σ(8) = 1 + 2 + 4 + 8 = 15

The following table computes τ and σ for 1, 2, 3, . . . , 12.

n 1 2 3 4 5 6 7 8 9 10 11 12
τ(n) 1 2 2 3 2 4 2 4 3 4 2 6
σ(n) 1 3 4 7 6 12 8 15 13 18 12 28

We immediately see that if p is prime, τ(p) = 2 and σ(p) = 1+p, as the only positive divisors
of p are 1 and p. We can generalize this for powers of p.

Lemma 1. For p prime and k > 0, τ(pk) = k + 1 and σ(pk) =
pk+1 − 1

p− 1
.

Proof. Let D(pk) =
{

1, p, p2, p3, . . . , pk
}

be the set of all positive divisors of pk. Then

τ(pk) = |D(pk)| = k + 1

by definition. To compute σ(pk), we use geometric sums:

σ(pk) =
∑

r∈D(pk)

r = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1

which concludes our proof. �

Notice how τ(6) = τ(2)τ(3), τ(10) = τ(2)τ(5), but this pattern doesn’t always hold:
τ(12) = 6 6= τ(2)τ(6) = 2 · 4 = 8. It turns out that if m,n are relatively prime, τ(mn) =
τ(m)τ(n). We have the following theorem:
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Theorem 1. For distinct primes p1, p2, . . . pr, and positive integers k1, k2, . . . , kr, we have

τ(pk11 p
k2
2 · · · pkrr ) = τ(pk11 )τ(pk22 ) · · · τ(pkrr )

Proof. We use a simple counting argument. Let N = pk11 p
k2
2 · · · pkrr , and consider the sets

Di =
{

1, pi, p
2
i , . . . , p

ki

i

}
for i = 1, 2, . . . , r. Any divisor of of N will be a product of up to ki

elements from each Di, and so the set D(N) of all positive divisors of N has size

τ(N) = |D(N)| = |D1| · |D2| · · · |Dr| =
r∏

i=1

(ki + 1) = τ(pk11 )τ(pk22 ) · · · τ(pkrr )

where the last equality follows from Lemma 1. �

A closer look at our table suggests that, similarly to τ , in general we do not have σ(mn) =
σ(m)σ(n), but it turns out that this result does hold for m and n are relatively prime.

Lemma 2. Let m and n be relatively prime. Then σ(mn) = σ(m)σ(n).

Proof. Let D(m) = {1,m1,m2, . . . ,m} be the set of all positive divisors of m, and D(n) =
{1, n1, n2, . . . , n} be the set of all positive divisors of n.

Observe that any divisor of mn is of the form minj, where mi ∈ D(m) and nj ∈ D(n).
The sum of the divisors of m and n, respectively, are

σ(m) = 1 +m1 +m2 + · · ·+m and σ(n) = 1 + n1 + n2 + · · ·+ n

It is easy to see that multiplying these two expression gives a sum of all possible combinations
minj, and so

σ(mn) =
∑
i,j

minj = (1 +m1 +m2 + · · ·+m)(1 + n1 + n2 + · · ·+ n) = σ(m)σ(n)

as desired. �

Theorem 2. For distinct primes p1, p2, . . . pr, and positive integers k1, k2, . . . , kr, we have

σ(pk11 p
k2
2 · · · pkrr ) = σ(pk11 )σ(pk22 ) · · · σ(pkrr ) =

r∏
i=1

pki+1
i − 1

pi − 1

Proof. Follows immediately from lemmas 1 and 2. �

2. Primer On Generating Functions

In the introduction, we saw that the sequences

{τ(n)}∞n=1 = {1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, . . .}
and

{σ(n)}∞n=1 = {1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, . . .}
are quite irregular, even though we were able to obtain some formulas for them. One use-
ful tool for studying sequences of real numbers {an}∞n=0 = {a0, a1, a2, . . .} is a generating
function.
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Definition. The ordinary generating function (OGF) of the sequence {an}∞n=0 is a formal
power series in the variable x whose coefficients are the terms in the sequence:

A(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + . . .

Example. The OGF of the sequence {1, 1, 1 . . .} is the function

1 + x+ x2 + x3 + · · · = 1

1− x
Usually, we are not interested in the question of convergence for these series. We are

simply interested in the coefficients it encodes. Manipulating the power series corresponds
to performing certain operations on the sequence of coefficients we are working with.

Example. Starting with two sequences {an}n≥0 = {a0, a1, a2, . . .} and {bn}n≥0 = {b0, b1, b2, . . .},
with corresponding OGFs A(x) and B(x), respectively, we have the following:

(a) Removing the first element of a sequence:

{a1, a2, a3, . . .} ←→
A(x)− a0

x

(b) Adding two sequences together, i.e. {an + c · bn}n≥0 where c is a constant:

{a0 + cb0, a1 + cb1, a2 + cb2, . . .} ←→ A(x) + cB(x)

(c)

{(n+ 1)an+1}n≥0 ←→ A′(x)

(d) {
0, a0,

a1
2
,
a2
3
,
a3
4
. . .
}
←→

∫ x

0

A(t)dt

Example. The convolution of two sequences, i.e. cn =
∑n

k=0 akbn−k, has OGF

{cn}n≥0 ←→ A(x)B(x)

Example. Given a sequence an, observe that the sequence of partial sums cn =
∑n

k=0 ak is
given by

{cn}n≥0 ←→
A(x)

1− x

Example. It is widely known that the n-th harmonic number

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

is never an integer for n ≥ 2. What is the OGF of the sequence {Hn}? By the previous
example, it suffices to find the OGF of

{
1, 1

2
, 1
3
, . . .

}
and divide it by 1−x to get the sequence

of partial sums. From calculus, we know that∑
n≥1

xn

x
= − log(1− x)
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and so the OGF must be ∑
n≥1

Hnx
n =

1

1− x
log

(
1

1− x

)
There are other types of generating functions, some more useful than others depending on

the properties of the sequence we are dealing with.

Definition. The exponential generating function (EGF) of the sequence {an}∞n=0 is

A(x) =
∞∑
n=0

an
xn

n!
= a0 + a1x+ a2x

2 + a3x
3 + . . .

Example. The EGF of the sequence {1, 1, 1, . . .} is
∑∞

n=0
xn

n!
= ex.

Example. The EGF of the factorial sequence {1, 1, 2, 6, 24, . . .} is
∑∞

n=0 n!x
n

n!
= 1/(1 − x),

which is the same as the OGF of {1, 1, 1, . . .}.

Example. Starting with a sequence {an}n≥0 = {a0, a1, a2, . . .} with EGF f(x), removing
the first element (i.e. looking at the sequence {a1, a2, . . .}) is equivalent to computing f ′(x),
since

f ′(x) =
∞∑
n=1

an
nxn−1

n!
=
∞∑
n=1

an
xn−1

(n− 1)!
=
∞∑
n=0

an+1
xn

n!

Example. The Fibonacci numbers satisfy the recurrence Fn+2 = Fn+1 + Fn, with initial
conditions F0 = 0 and F1 = 1, and by the previous example the EGF of Fn must satisfy
the differential equation f ′′(x) = f ′(x) + f(x). I will skip the details here, but solving this
differential equation gives the EGF of the Fibonacci sequence

f(x) =
1√
5

(
e(r+)x + e(r−)x

)
, r± =

1±
√

5

2

This gives a much easier method of solving for Binet’s formula, which could be obtained
using the OGF, but it involves partial fraction decompositions.

Example. Given sequence {an} and {bn} with EGF A(x) and B(x), what is the sequence
whose EGF is the product AB? (In the OGF case, we saw this was a convolution.)

AB =
∑
i≥0

ai
xi

i!

∑
j≥0

bj
xj

j!
=
∑
i,j≥0

aibj
xi+j

i!j!
=
∑
n≥0

xn

(∑
i+j=n

aibj
i!j!

)
=
∑
n≥0

xn

n!

(∑
i+j=n

aibjn!

i!j!

)

and so the coefficient of xn/n! in the product AB is

cn =
∑
k

(
n

k

)
akbn−k

Hence the resulting sequence is another type of convolution of of an and bn.
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3. The Dirichlet Generating Function

While the OGF and EGF are useful in studying many sequences of numbers, they do
not have the desired properties to help us in studying the sequences that arise from the
number-theoretic functions τ(n) and σ(n).

Definition. The Dirichlet generating function (DGF) of the sequence {an}∞n=1 is

A(s) =
∞∑
n=1

an
ns

= a1 +
a2
2s

+
a3
3s

+
a4
4s

+ . . .

Example. The DGF of the sequence {1, 1, 1, . . .} is

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+

1

4s
+ . . .

which is the Riemann zeta function.
Suppose the DGF of sequences an and bn are given by A(s) and B(s), respectively. As

we did for the other types of generating functions, we will explore what sequence does the
product AB describe. Notice that

AB =
(
a1 + a22

−s + a33
−s + a44

−s + . . .
)(
b1 + b22

−s + b33
−s + b44

−s + . . .
)

= (a1b1)1
−s + (a1b2 + a2b1)2

−s + (a1b3 + a3b1)3
−s

+ (a1b4 + a2b2 + a4b1)4
−s + . . .

In general, the coefficent of n−s in the product AB is a sum over all products of the form
aibj where the product of i and j is n: ∑

ij=n

aibj

Another way to express this is by ∑
d|n

adbn/d

which is another type of convolution of sequences an and bn, indexed over all positive divisors
of n. This makes the DGF a promising object for studying the sequences τ(n) and σ(n),
which are related to the divisors of n.

One natural question that arises from the previous example is the following: suppose an
has DGF f(s). What sequence does the DGF fk(s) (the product of k copies of f) describe?

fk(s) =

(∑
n≥1

ann
−s

)k

=
∑

n1,...,nk≥1

an1 · · · ank
(n1 . . . nk)−s

and if we collect coefficients of n−s, this becomes

fk(s) =
∑
n≥1

( ∑
n1...nk=n

an1an2 · · · ank

)
n−s
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If we apply this to the sequence (1, 1, 1, . . .) with DGF ζ(s), we find that ζk(s) generates
a sequence with a nice combinatorial description: the number of ordered factorizations of n
into k factors.

In particular, for k = 2, ζ2(s) generates the sequence∑
d|n

1 · 1


∞

n=1

which is the sequence τ(n) of the divisor function.

4. Multiplicative Number-Theoretic Functions

Definition. A number-number theoretic function is a function f : N→ R. Such a function
is multiplicative whenever f(mn) = f(m)f(n) for m and n relatively prime.

Example. We saw that τ and σ are multiplicative. The identity function f(n) = 1 is
another example of a multiplicative function, and we saw that its DGF is The Riemann zeta
function ζ(s).

One known property of ζ(s) is that it can be expressed as a product over all primes p:

ζ(s) =
∑
n≥1

n−s =
∏
p

(
1

1− p−s

)
and each term can be thought of as the closed form of a geometric series, so we may write∑

n≥1

n−s =
∏
p

(
1 + p−s + p−2s + p−3s + . . .

)
Is it possible to generalize this result to other sequences f(n)? The following theorem answers
this question.

Theorem 3. Let f be a multiplicative number-theoretic function. Then the DGF of the
sequence f(n) satisfies the formal identity∑

n≥1

f(n)

ns
=
∏
p

(
1 + f(p)p−s + f(p2)p−2s + f(p3)p−3s + . . .

)
The proof of this theorem is rather complicated, and it appears in detail in Wilf. Instead of
presenting the proof, we apply the result in order to obtain the DGF of the sequence σ(n).

Theorem 4. The DGF of the σ(n) sequence is ζ(s)ζ(s− 1).

Proof. Recall that for any prime p, σ(pk) = 1 +p+p2 + · · ·+pk. We are interested in finding

F (s) =
∑
n≥1

σ(n)

ns

and by Theorem 3 this should equal to∑
n≥1

σ(n)

ns
=
∏
p

(
1 + σ(p)p−s + σ(p2)p−2s + σ(p3)p−3s + . . .

)
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which amounts to understanding every term of the form

1 + σ(p)p−s + σ(p2)p−2s + σ(p3)p−3s + . . .

Using the geometric sum expansion for σ(pk), this term becomes the infinite sum

(1)

+ (1 + p)p−s

+ (1 + p+ p2)p−2s

+ (1 + p+ p2 + p3)p−3s

+ (1 + p+ p2 + p3 + p4)p−4s

...

Instead of summing this infinite triangular array of terms horizontally, we distribute p−ks

and we sum the terms vertically. Notice that every vertical row corresponds to a geometric
series with common ratio p−s, so which gives

1

1− p−s
+

p−sp1

1− p−s
+

p−2sp2

1− p−s
+

p−3sp3

1− p−s
+

p−4sp4

1− p−s
+ . . .

Now, the numerators also form a geometric series with common ration p−s+1 = p−(s−1), so
every term in the product is equal to

1

1− p−s
· 1

1− p−(s−1)

Finally, our DGF can be expressed as

F (s) =
∏
p

(
1

1− p−s
· 1

1− p−(s−1)

)
=
∏
p

(
1

1− p−s

)
·
∏
p

(
1

1− p−(s−1)

)
= ζ(s)ζ(s− 1)

which concludes our proof. �

5. The Möbius Function and Euler’s Totient Function

The proof of Theorem 4 can be extended for other multiplicative functions. For prime
powers, the Möbius function µ(n) is equal to

µ(pk) =


+1 k = 0

−1 k = 1

0 k ≥ 0

It is not too difficult to show that the DGF of the sequence µ(n) is equal to∑
n≥1

µ(n)

ns
=

1

ζ(s)
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Furthermore, a very similar but much easier calculation to Theorem 4 shows that the DGF
of Euler’s totient function φ(n), which satisfies φ(pk) = pk − pk−1, is given by∑

n≥1

φ(n)

ns
=
ζ(s− 1)

ζ(s)

We can think of this as a convolution of the sequences whose DGF are ζ(s− 1) and 1/ζ(s).
What sequence corresponds to ζ(s− 1)? It is easy to see that this is the DGF of an = n:∑

n≥1

n

ns
=
∑
n≥1

1

ns−1 = ζ(s− 1)

Recall that µ(n) had the DGF 1/ζ(s). Then φ(n) is a Dirichlet convolution of an = n and
µ(n), which immediately gives the famous result:

φ(n) =
∑
d|n

µ(d)
n

d

What about the Dirichlet convolution of φ(n) with the constant sequence an = 1? This is
the sequence whose DGF is the product

ζ(s− 1)

ζ(s)
· ζ(s) = ζ(s− 1)

which is the DGF of the sequence {n}. But this now proves another famous result∑
d|n

φ(d) = n

So we see that this intersection of number theory, combinatorics, and analysis can be used
to prove some very powerful results in an elegant fashion, which would otherwise require
tedious divisibility arguments.

One last very quick application is a proof of the Möbius Inversion Formula.

Theorem 5. (Möbius Inversion) Suppose f and g are number-theoretic functions satisfying

g(n) =
∑
d|n

f(d)

Then

f(n) =
∑
d|n

µ(d)g
(n
d

)
Proof. Suppose F (s) and G(s) are the DGF of sequences f(n) and g(n) respectively. If f
and g are related by g(n) =

∑
d|n f(d), then g is a Dirichlet convolution of f with an = 1, so

G(s) = F (s) · ζs. But then

F (s) =
G(s)

ζ(s)

so f is a Dirichlet convolution of g(n) with µ(n) (whose DGF is 1/ζ). �

Theorem 6. For any n ≥ 1, ∑
d|n

µ(d)τ
(n
d

)
= 1
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Proof. the DGF of µ(n) is 1/ζ(s), while the DGF of τ(n) is ζ2(s). Their product is ζ(s),
which is the DGF of the constant sequence an = 1. �
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