Probabilistic Proofs

Adrian Păcurar

University of Notre Dame Department of Mathematics

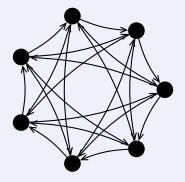
GSS October 30, 2017

contact: apacurar@nd.edu

Tournaments

Definition: A *tournament* is a complete directed graph T = (V, E) on a set of n vertices V, with a set of directed edges E so that for every distinct $u, v \in V$, either $(u, v) \in E$ or $(v, u) \in E$.

Example: The following is a tournament with 7 vertices.



Tournaments

One may think of the vertices V as being the players. The edge set *encodes the outcome of every game*: the presence of (u, v) indicates that u beats v, while (v, u) indicates the opposite outcome.

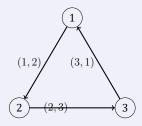
In a tournament with \boldsymbol{n} players, we have

- $\binom{n}{2}$ edges (total games played)
- $2^{\binom{n}{2}}$ possible tournaments

Q: Is there a dominating player? Answer: not always.

Definition: We say a tournament *has property* D_k if for every subset $K \subseteq V$ of k players, there is a dominating player (in $V \setminus K$) that beats all.

Example: The following tournament has property D_1 .



Q: For every finite k, is there a tournament (on more than k vertices) with property D_k ? How many vertices do we need?

Theorem (Erdős, 1963): If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there exists a tournament on *n* vertices with property D_k .

Proof: Consider a random tournament on $V = \{1, 2, ..., n\}$.

- Decide the outcome of every game by flipping a fair coin
- ▶ For every subset $K \subseteq V$ of size k, define the event

 A_K : the event that no player dominates K

▶ For an outside player $u \in V \setminus K$, the probability that u beats all players in K is $(1/2)^k = 2^{-k}$, and so

 $P(u \operatorname{\textit{does}} \operatorname{\textit{NOT}} \operatorname{\textit{dominate}} K) = 1 - 2^{-k}$

• What is $P(A_K)$? There are n - k players outside K, so

$$P(A_K) = (1 - 2^{-k})^{n-k}$$

Theorem (Erdös, 1963): If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there exists a tournament on *n* vertices with property D_k .

Proof: We saw that for every subset K, the event A_K that no player dominates K occurs with probability

$$P(A_K) = (1 - 2^{-k})^{n-k}$$

Q: What is the probability that we don't have property D_k ? The probability that one or more of these subsets K do not have a dominating vertex is

$$P\left(\bigcup_{\substack{K\subseteq V\\|K|=k}}A_K\right) \le \sum_{\substack{K\subseteq V\\|K|=k}}P(A_K) = \binom{n}{k}\left(1-2^{-k}\right)^{n-k}$$

Theorem (Erdös, 1963): If $\binom{n}{k}(1-2^{-k})^{n-k} < 1$, then there exists a tournament on *n* vertices with property D_k .

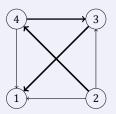
Proof: We saw that a randomly constructed tournament will lack property D_k with probability

$$P(\operatorname{\mathsf{no}} D_k) = \binom{n}{k} (1 - 2^{-k})^{n-k}$$

- ► If this is smaller than 1, this guarantees the existence of some tournament on *n* vertices with property *D*_k
- $\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k!}$ is polynomial in n of degree k
- $(1-2^{-k})^{n-k}$ is exponential in n with base < 1
- ► The desired condition occurs for sufficiently large *n*

Definition: A *Hamiltonian path* in a tournament is a permutation $\{v_{\pi(1)}, v_{\pi(2)}, \dots, v_{\pi(n)}\}$ of the vertices such that $v_{\pi(i)}$ beats $v_{\pi(i+1)}$ for every *i*.

Example:



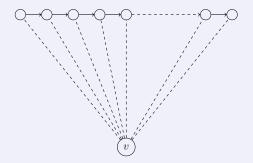
The tournament shown contains one H-path:

$$2 \rightarrow 4 \rightarrow 3 \rightarrow 1$$

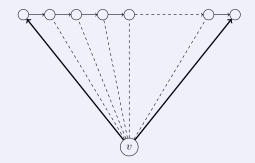
Theorem (Rédei, 1934): Every tournament *T* contains a Hamiltonian path.

Proof: Consider a path that misses a vertex v:

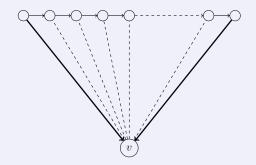
Theorem (Rédei, 1934): Every *T* contains a H-path.



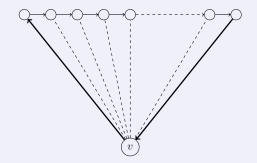
Theorem (Rédei, 1934): Every *T* contains a H-path.



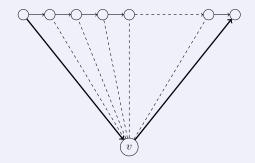
Theorem (Rédei, 1934): Every *T* contains a H-path.



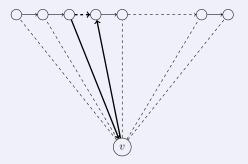
Theorem (Rédei, 1934): Every *T* contains a H-path.



Theorem (Rédei, 1934): Every *T* contains a H-path.



Theorem (Rédei, 1934): Every *T* contains a H-path.



Q: Are there tournaments with a lot of H-paths?

Theorem (Szele, 1943): There exist a tournament with *n* players and $n!/2^{n-1}$ H-paths.

Proof: Construct a random tournament T.

- Define a random variable X = the # of H-paths in T
- For every permutation $\pi \in S_n$ of the vertices, define the indicator random variable

$$\chi_{\pi} = egin{cases} 1 & ext{if } \pi ext{ forms a H-path} \ 0 & ext{otherwise} \end{cases}$$

Observe that X can be written as

$$X = \sum_{\pi} \chi_{\pi}$$

Theorem (Szele, 1943): There exist a tournament with n players and $n!/2^{n-1}$ H-paths.

Proof: What is E(X)?

$$E(X) = E\left(\sum_{\pi} \chi_{\pi}\right)$$

= $\sum_{\pi} E(\chi_{\pi})$ (linearity of expectation)
= $\sum_{\pi} \frac{1}{2^{n-1}}$ (there are $n-1$ possible edges)
= $\frac{n!}{2^{n-1}}$

At least one tournament will achieve or surpass this bound.

Sum-Free Sets

Definition: A subset *S* of an additive group is *sum-free* whenever $x + y \notin S$ for all $x, y \in S$.

Example: The odd integers are sum-free.

Theorem (Erdős, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with |S| > N/3.

Proof:

- Start with $A \subseteq \mathbb{N}$ with N elements
- Pick a prime p = 3k + 2 with $p > 2 \cdot \max_{a \in A} \{|a|\}$
- ► Consider $B = \{k + 1, k + 2, ..., k + (k + 1)\}$, which is a sum-free subset of $\mathbb{Z}/p\mathbb{Z}$
- ▶ Pick $t \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ uniformly at random, and let

$$A_t = \{a \in A : at \in B \pmod{p}\}$$

Sum-Free Sets

Theorem (Erdös, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with |S| > N/3.

Proof: So far we have:

- ▶ $B = \{k + 1, k + 2, ..., k + (k + 1)\}$ sum free
- ► $A_t = \{a \in A : at \in B \pmod{p}\}$ is also sum-free (since its residues modulo p belong to B)
- ▶ Goal: show that *A*^{*t*} is large for some *t*
- For any fixed $a \in A$, and look at $a \cdot t$:

$$P[at \in B \pmod{p}] = \frac{|B|}{p-1} = \frac{k+1}{3k+1} > \frac{1}{3}$$

(recall $t \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, $0 \notin A$, and t was uniformly chosen)

Sum-Free Sets

Theorem (Erdős, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with |S| > N/3.

Proof:

• We saw that for any fixed $a \in A$ and random t,

 $P[at \in B \pmod{p}] > 1/3$

• What is the expectation $E(|A_t|)$?

$$E(|A_t|) = \sum_{a \in A} P(a \in A_t)$$
$$= \sum_{a \in A} P[at \in B \pmod{p}] > \frac{|A|}{3}$$

Thank You!