Probabilistic Proofs

Adrian Păcurar

University of Notre Dame
Department of Mathematics

GSS
October 30, 2017

contact: apacurar@nd.edu

Tournaments

Definition: A tournament is a complete directed graph $T=(V, E)$ on a set of n vertices V, with a set of directed edges E so that for every distinct $u, v \in V$, either $(u, v) \in E$ or $(v, u) \in E$.

Example: The following is a tournament with 7 vertices.

Tournaments

One may think of the vertices V as being the players. The edge set encodes the outcome of every game: the presence of (u, v) indicates that u beats v, while (v, u) indicates the opposite outcome.

In a tournament with n players, we have

- $\binom{n}{2}$ edges (total games played)
- $2^{\binom{n}{2}}$ possible tournaments

Q: Is there a dominating player? Answer: not always.

Tournaments And Dominating Players

Definition: We say a tournament has property D_{k} if for every subset $K \subseteq V$ of k players, there is a dominating player (in $V \backslash K$) that beats all.

Example: The following tournament has property D_{1}.

Q: For every finite k, is there a tournament (on more than k vertices) with property D_{k} ? How many vertices do we need?

Tournaments And Dominating Players

Theorem (Erdös, 1963): If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there exists a tournament on n vertices with property D_{k}.
Proof: Consider a random tournament on $V=\{1,2, \ldots, n\}$.

- Decide the outcome of every game by flipping a fair coin
- For every subset $K \subseteq V$ of size k, define the event A_{K} : the event that no player dominates K
- For an outside player $u \in V \backslash K$, the probability that u beats all players in K is $(1 / 2)^{k}=2^{-k}$, and so

$$
P(u \text { does NOT dominate } K)=1-2^{-k}
$$

- What is $P\left(A_{K}\right)$? There are $n-k$ players outside K, so

$$
P\left(A_{K}\right)=\left(1-2^{-k}\right)^{n-k}
$$

Tournaments And Dominating Players

Theorem (Erdös, 1963): If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there exists a tournament on n vertices with property D_{k}.

Proof: We saw that for every subset K, the event A_{K} that no player dominates K occurs with probability

$$
P\left(A_{K}\right)=\left(1-2^{-k}\right)^{n-k}
$$

Q: What is the probability that we don't have property D_{k} ? The probability that one or more of these subsets K do not have a dominating vertex is

$$
P\left(\bigcup_{\substack{K \subset V \\|K|=k}} A_{K}\right) \leq \sum_{\substack{K \subset V \\|K|=k}} P\left(A_{K}\right)=\binom{n}{k}\left(1-2^{-k}\right)^{n-k}
$$

Tournaments And Dominating Players

Theorem (Erdös, 1963): If $\binom{n}{k}\left(1-2^{-k}\right)^{n-k}<1$, then there exists a tournament on n vertices with property D_{k}.
Proof: We saw that a randomly constructed tournament will lack property D_{k} with probability

$$
P\left(\text { no } D_{k}\right)=\binom{n}{k}\left(1-2^{-k}\right)^{n-k}
$$

- If this is smaller than 1 , this guarantees the existence of some tournament on n vertices with property D_{k}
- $\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k!}$ is polynomial in n of degree k
- $\left(1-2^{-k}\right)^{n-k}$ is exponential in n with base <1
- The desired condition occurs for sufficiently large n

Hamiltonian Paths In Tournaments

Definition: A Hamiltonian path in a tournament is a permutation $\left\{v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right\}$ of the vertices such that $v_{\pi(i)}$ beats $v_{\pi(i+1)}$ for every i.

Example:

The tournament shown contains one H-path:

$$
2 \rightarrow 4 \rightarrow 3 \rightarrow 1
$$

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every tournament T contains a Hamiltonian path.

Proof: Consider a path that misses a vertex v :

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Theorem (Rédei, 1934): Every T contains a H-path.
Proof: Any path that misses a vertex v can be modified to include that vertex:

Hamiltonian Paths In Tournaments

Q: Are there tournaments with a lot of H-paths?
Theorem (Szele, 1943): There exist a tournament with n players and $n!/ 2^{n-1} \mathrm{H}$-paths.

Proof: Construct a random tournament T.

- Define a random variable $X=$ the \# of H-paths in T
- For every permutation $\pi \in S_{n}$ of the vertices, define the indicator random variable

$$
\chi_{\pi}= \begin{cases}1 & \text { if } \pi \text { forms a H-path } \\ 0 & \text { otherwise }\end{cases}
$$

- Observe that X can be written as

$$
X=\sum_{\pi} \chi_{\pi}
$$

Hamiltonian Paths In Tournaments

Theorem (Szele, 1943): There exist a tournament with n players and $n!/ 2^{n-1} \mathrm{H}$-paths.

Proof: What is $E(X)$?

$$
\begin{aligned}
E(X) & =E\left(\sum_{\pi} \chi_{\pi}\right) \\
& =\sum_{\pi} E\left(\chi_{\pi}\right) \text { (linearity of expectation) } \\
& =\sum_{\pi} \frac{1}{2^{n-1}} \text { (there are } n-1 \text { possible edges) } \\
& =\frac{n!}{2^{n-1}}
\end{aligned}
$$

At least one tournament will achieve or surpass this bound.

Sum-Free Sets

Definition: A subset S of an additive group is sum-free whenever $x+y \notin S$ for all $x, y \in S$.

Example: The odd integers are sum-free.
Theorem (Erdös, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with $|S|>N / 3$.

Proof:

- Start with $A \subseteq \mathbb{N}$ with N elements
- Pick a prime $p=3 k+2$ with $p>2 \cdot \max _{a \in A}\{|a|\}$
- Consider $B=\{k+1, k+2, \ldots, k+(k+1)\}$, which is a sum-free subset of $\mathbb{Z} / p \mathbb{Z}$
- Pick $t \in(\mathbb{Z} / p \mathbb{Z})^{\times}$uniformly at random, and let

$$
A_{t}=\{a \in A: a t \in B(\bmod p)\}
$$

Sum-Free Sets

Theorem (Erdös, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with $|S|>N / 3$.

Proof: So far we have:

- $B=\{k+1, k+2, \ldots, k+(k+1)\}$ sum free
- $A_{t}=\{a \in A: a t \in B(\bmod p)\}$ is also sum-free (since its residues modulo p belong to B)
- Goal: show that A_{t} is large for some t
- For any fixed $a \in A$, and look at $a \cdot t$:

$$
P[a t \in B(\bmod p)]=\frac{|B|}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}
$$

(recall $t \in(\mathbb{Z} / p \mathbb{Z})^{\times}, 0 \notin A$, and t was uniformly chosen)

Sum-Free Sets

Theorem (Erdös, 1965): Let $A \subseteq \mathbb{N}$ be a set of N nonzero integers. Then there is a sum-free $S \subseteq A$ with $|S|>N / 3$.

Proof:

- We saw that for any fixed $a \in A$ and random t,

$$
P[a t \in B(\bmod p)]>1 / 3
$$

- What is the expectation $E\left(\left|A_{t}\right|\right)$?

$$
\begin{aligned}
E\left(\left|A_{t}\right|\right) & =\sum_{a \in A} P\left(a \in A_{t}\right) \\
& =\sum_{a \in A} P[a t \in B(\bmod p)]>\frac{|A|}{3}
\end{aligned}
$$

Thank You!

